NC soft for Machine Shop

Home Page http://www.autonc.jp

The R chamfering Manual

[RADIUS]

You can cut Radial Chamfered surface by the equal height processing by the radius end mill. One-way, or the Zigzag machining can be chosen.
In the range of same Z height, the zigzag machining can be chosen.
When the path at the same Z height is one, it becomes one-way machining.
This is for roughing cut. It is best for steel block.
[BALL]

It cuts Radial Chamfered surface with the ball end mill.
By the zigzag surface going-along processing, you complete a surface.
This is for finish cut.
It machines a circumference at the equal pace.

[INSIDE R]

It machines Radial inside by the equal high processing by the radius tool. It estimates rectangular material. It machines and puts corner R.

[BOTH IN R]

It machines Radial inside by the equal high processing by the radius tool. It machines and puts both corner R.
[R Calculate]

If radius is bigger than depth at the Inside-R or Both- in- R,there are 2 way for the drawing size in instruction.

This converts the drawing size.

[Japanese]

When pushing this button, it becomes Japanese display.

[Parameter]

You specify an editor for the editing.
You start up the editor at the "EDIT" button of the program.
At present, you aren't using the rapid move speed of the machine tool.

[RADIUS]

Data Area

Rapid move Z height

It makes a corner X0ZO.
And it enters data.

The Y axis data moves from Y Start Point to Y End Point by one-way cut or two-way cut (the range with same Z height). The starting point of the Y axis is optional.
When it is not below the decimal point, the decimal point can be omitted.
H. When moving Z by rapid move, it takes a distance of this width from steel block.

Cuttiong Condition

As R revision, refer to next page.
<The thinking way of cutting width>
D. Z Down Value, every time it goes down, the width to cut is computed.

It cuts off a quotient with (the width / E. Std.cutting width) and it decides the cut number of times.
If it doesn't exceed F.Limit cutting width, it moves a tool at the pace. When exceeding a F width, it divides by the cut number of times +1 once more and it decides a pace.
G.Remainder is the remaining finish value. itis perpendicular to the surface.

When cutting deeply at the equal pace in Z, as for the upper surface of radius, the surface becomes rough.
Therefore, you use the ball end mill of the finishing. Then, you select R-revision "No". However, when wanting to make an end in roughing process, you select R-revision "Yes" . The data which revises radius in the end of the NC data is added.

NC Output

You choose Yes or No at the <G92>.
When you choose Yes, G90G92X0Y0Z(the rapid move z height) is stored.
When it is No, G90X0Y0; G01Z(the rapid move z height) is stored.
(For the details, you refer to the NC data).

You choose one-way or two-way with the radio button. When choosing one-way, it moves from the Y start point only to the direction of the Y end point. When returning to the Y start point, Z rises to the rapid moving height, and moves a pitch after returning to the previous staring-point.

(-) 1 way
2way
Write Holder:

The Display of the NC data

The following shows by "NC DISPLAY" button. This figure is shown in "the XZ plane".

Following figure is shown in " VIEW2".

The following figure is displaying a "Check File". You can understand a width of cuts and a shape. First, it goes to the most low position of Z.

The Display menu

吗 Outside Radial Chamfer (Grid 10 mm)
\vdots ReDraw
XY

You can select the display direction.
XY plane, XZ plane ,YZ plane, View1, View1a, View2, View3, View3a, View4.
View* is the show that was seen from the diagonal top.
View1, View2, View3, View4 are the show which was seen from 30 degrees above from just beside.
View1a, View3a are the show, which was seen from 60 degrees above from just beside.

The show button of Grid, the centerline, the Axis, Circle becomes on.

When making "Grid" off, the grid of blue 10 mm disappears.
When making "Centerline" off, the olive-green X -axis, the Y -axis, the Z -axis disappear.
When making "Axis" off, the coordinate system of the X, the Y, Z disappears.
When making "Circle" off, the tool diameter display disappears.

The part can be displayed in the expansion when clicking with the mouse and dragging.

It returns to the ex-screen by "Close".

[BALL]

R CHAMFER BALL TOOL

D. Remainder: $: 0 \mathrm{~mm}$
Write Holder:

Z- Down- Value is a length on the circumference.

The way of the data definition is the same as the "RADIUS".
Only a difference is described.

The Y axis data goes and returns between the Y start point and the Y end point. By the surface going-along processing, it machines a circumference at the equal pace.

The Display of the NC data

The following figure shows by "NC DISPLAY" button. This figure is shown in "the XZ plane".

Following figure is shown in " VIEW2".

The following figure is displaying a " Check File".
It moves a width of cuts in Z0. And after that, it moves along the finish line.

[INSIDE R]

Data Area

Cutting Condition

(L. Inside R Chamfer) $=0$ or (L.
 Inside R Chamfer) < (B.Corner R) Then it computes as (L. Inside R Chamfer) $=(\mathrm{B}$. Corner R)
For example, if $L=5$ or $L=0$, it becomes L=8.

It is possible even if (K.Depth < L.Inside R Chamfer).
Because the width in this case is the width which the corner radius comes in tangent with, it is different from the actual width.
It uses "R Calculate" command to find tangent width from the actual width.

As for the figure below, at the 20-mm depth, the corner radius is 40 mm .

The Display of the NC data

The following shows by "NC DISPLAY" button. This figure is shown in "the XZ plane".

Following figure is shown in " VIEW2".

The following figure is displaying a "Check File".
You can understand a width of cuts and a shape.
It moves the last shape after moving a width of cuts in ZO.

[BOTH IN R]

Data Area
Rapid move Z height

The Y axis data moves from Y Start Point to Y End Point.

However, in which direction, it becomes a down cut.
The starting point of the Y axis is optional.
When it is not below the decimal point, the decimal point can be omitted.

Cutting Condition

It is possible even if (K.Depth < L.Inside R Chamfer).
Because the width in this case is the width which the corner radius comes in tangent with, it is different from the actual width.
It uses "R Calculate" command to find tangent width from the actual width.

As for the figure below, at the 20 mm depth, the corner radius is 40 mm .

The Display of the NC data

The following shows by "NC DISPLAY" button. This figure is shown in "the XZ plane".

Following figure is shown in "VIEW1".

Following figure is shown in "VIEW1" and "Circle" is off.

The following figure is displaying a "Check File". You can understand a width of cuts and a shape. It moves the last shape after moving a width of cuts in Z0.

[R Calculate]

显 Inside R. Both Inside R. Length Calculation.
Inside R, Both Inside R, Length Calculation.

Answer is Copiable.

CLEAR

cALCULATE

Input Inside R or Both Inside R. If Both is filled, Use Inside R.

CANCEL
"Inside R", "Both Inside R" of this software needs to put a distance to the tangent Radius. But depending on the drawing, it is written a actual size to cut. This software converts the data.

Inside R, Both Inside R, Length Calculation.

Answer is Copiable.

CLEAR

CALCULATE

Input Inside R or Both Inside R. If Both is filled, Use Inside R.

CANCEL

Input "Inside R" or "Both Inside R" and a depth and a corner R, and pushing the "CALCULATE" button, the distance to the tangential line is converted.

Answer is copiable.
Answer can copy and paste to the [INSIDE R] or [BOTH IN R] software.
The R Calculate can open even if the other software is open.
The above

